

Simulation at the science-policy interface

Communication about prospects and limitations of simulation results for policy makers (COPLOS)

Dirk Scheer University of Stuttgart Institute of Social Sciences V - Research Unit Risk and Sustainability

CDMC Seminars – 2009 - Oktober 22, 2009

at Carnegie Mellon University - Pittsburgh/US

content

1. My background

2. Simulation

general observations from a social science perspective

3. Simulation

at the science-policy interface – (COPLOS) project

4. Conclusions

Short presentation

- Education
 - Background political science & roman literature

Profession

- 2001-2008: senior reseracher at Institut for Ecological Economy Research (www.ioew.de)
- Since 2009 at University of Stuttgart (www.zirn.info.de)

Reserach projects on:

- Integrated Product Policy & environmental governance
- Sustainability Impact Assessment
- Risk communication & assessment
- Simulation & Carbon Capture and Storage

Δ

2. Simulation – general observations from a social science perspective

Role of simulation in evolution

• Different knowledge selection strategies in evolution

- Learning by coincidence
- Magic knowledge
- Trial and Error (unsystematic)
- Trial and Error (by theory)
- conscious experimenting (model building)
- Simulation

• Increasing tendency to virtualize selection strategies

- Error is less painful

Elements & instruments of future knowledge

Simulations

- Casual, functional or sequential style of modelling consisting of dynamic process aming at the prediction
 - Natural phenomena
 - Technological impact chains
 - Consequences of human action
- Interdisciplinary approach applying different tools & methods
 - aiming at setting up a formalised, mathematical code
- Integration of observed and/or modelled rules, decisions and random fluctuations

Characteristics of simulation

- Aligned to predict processes and their consequences under fixed conditions
- Based on a combination of functional defined relations between variables
- Based on complex and often uncertain relations; single (bivariate) connections must be known and be able to formulize
- Integrated simulation focus on trade-offs between technological, economic and social development

Simulation - three problems

- Complexity (cause and effect)
- Uncertainty
 - Range of variation
 - Meassuring error & extrapolation
 - Stochastic patterns
 - System boundaries and ignorance
- Ambiguity

3. Simulation at the science-policy interface – (COPLOS) project

Project cornerstones

• Title:

- Communication about prospects and limitations of simulation results for policy makers
- Duration of the project:
 - -01.11.2008 30.10.2011
- Scientific staff:
 - Ortwin Renn, Dirk Scheer
- Funded by:
 - National Science Foundation

Project design

• Main objective:

- to elicit the dominant expectation's and requirements from the policy side and match this input with the specific performance and reliability of the simulation processes under investigation.
- Case study approach
 - Simulation in the field of carbon capture and storage
- Methodology
 - Literature review
 - explorative survey with policy decision-makers (15-20 interviews)

CCS - what is it?

Source: Special Report IPPC 2005

The research leading packages

Package 1 - Literature topics

Science-policy interface

- Ideal-type approach, support role science, functionalism
- Paradigm shift (mode 2, post-normal science)

Interaction patterns science-policy

- Policy cycle approach,
- advocay coalition appraoch

Communication of models & simulation

- foreign language character of simulation
- certainty vs. uncertainty

Package 1 – classification ideas

Aim: identify differences among SIM regarding their role for policy-making

SIM topic	SIM results
Paths of developments - Technological - economic - social	explaining - natural phenomena - Technological impact chains - Consequences of human action
SIM Policy-making input	

- 1. Optimization of knowledge basis
- 2. Objectification of the debate
- 3. Contributing to informed implementation of policy decisions
- 4. Contributing to 'socially robust' decisions
- 5. Contributing to avoiding or to resolving conflicts
- 6. Providing reflexive knowledge

Simulation & CCS - finding SIM-families

Framing SIM - future energy scenarios

Source: Bennaceur Kamel, Gielen Dolf (2009) in: Energy Procedia 1 (2009) 4297–4306

Technology I Sim - capture efficiency

Figure 11. Run 3C - Absorber Gas Temperature and CO2 Concentration Profile

Ross Dugas et al (2009), in: Energy Procedia 1, 103-107

X. Luo et al (2009): in: Energy Procedia 1, 249-1256,

Technology II Sim - spatial pipeline planning

Figure 1: Model applied to CO₂ sources in the US Pacific Northwest: Potential sources, reservoirs, and candidate network route s (left), with optimized deployment for 15 Mt CO₂/year system (right), set againstcost surface

Richard S. Middleton, Jeffrey M. Bielicki (2009), in: Energy Procedia 1, 611-1616

20

Consequence analysis SIM

Christine Doughty et al. (2009), in: Energy Procedia 1, 3291-3298,

Alv-Arne Grimstad et al. (2009), in: Energy Procedia 1, 2511-2518,

Package 2 - 3 - 4

- 2. Mapping SIM communication
 - What are the communication patterns of SIM towards policy?
 - Which actors are relevant (role of knowledge broker, intermediate agencies)
- 3. Transformation of SIM-results
 - Transformation process of SIM results towards policy-makers?
 - If yes, are there general rules for explaining these changes?
- 4. Requirements from policy side
 - What are the requirements from policy side to more efficiently/effectively use SIM results

Conclusions

• **Promising results:**

- Classification framework,
- communication & transformation patterns
- policy requirements

>> improving the communication capabilities along science-policy

Challenges

- Integration of social, technological and natural conditions necessary for good results in predicting consequences of action in complex human-technique-nature interactions
- Connectivity between rules, decision and noise is a challenge
- To deal with complexity, uncertainty, ambiguity requires different methods
- integration of ambiguity leads to a loss of accuracy

Thank you!

Contact: Dirk Scheer Email: <u>dirk.scheer@sowi.uni-stuttgart.de</u> Tel: ++49 (0)6221-432391